A Comparison of Ensemble Creation Techniques
نویسندگان
چکیده
We experimentally evaluate bagging and six other randomization-based approaches to creating an ensemble of decision-tree classifiers. Bagging uses randomization to create multiple training sets. Other approaches, such as Randomized C4.5 apply randomization in selecting a test at a given node of a tree. Then there are approaches, such as random forests and random subspaces, that apply randomization in the selection of attributes to be used in building the tree. On the other hand boosting, as compared here, incrementally builds classifiers by focusing on examples misclassified by existing classifiers. Experiments were performed on 34 publicly available data sets. While each of the other six approaches has some strengths, we find that none of them is consistently more accurate than standard bagging when tested for statistical significance.
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملAn Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles
We address one of the main open issues about the use of diversity in multiple classifier systems: the effectiveness of the explicit use of diversity measures for creation of classifier ensembles. So far, diversity measures have been mostly used for ensemble pruning, namely, for selecting a subset of classifiers out of an original, larger ensemble. Here we focus on pruning techniques based on fo...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004